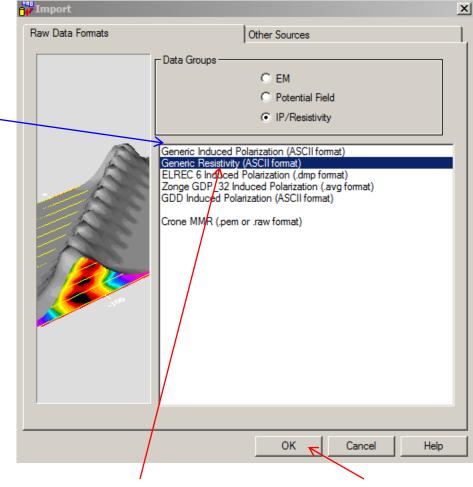
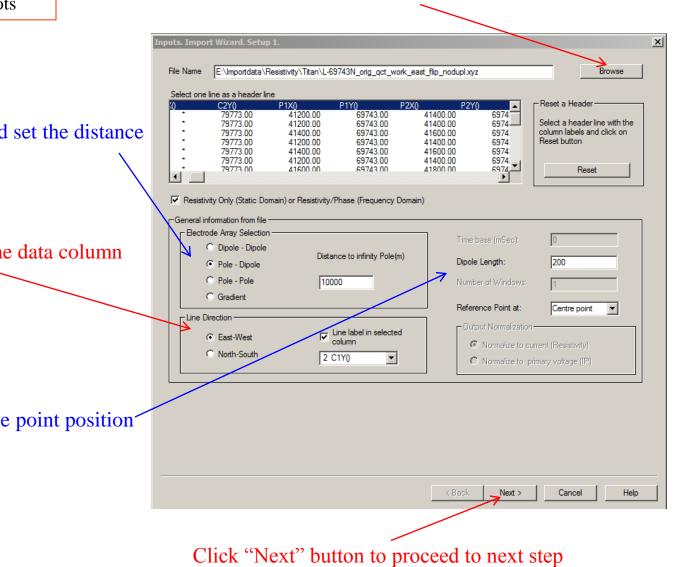

# **3D RESISTIVITY INVERSION TUTORIAL**


| Steps:                                     | Page |
|--------------------------------------------|------|
| 1. Import data to new or existing database | 2    |
| 2. Examine data                            | 6    |
| 3. Perform initial forward modeling        | 8    |
| 4. Perform 3D resistivity inversions       | 9    |
| 5. Check model and create plots            | 16   |
|                                            |      |



**Resistivity Inverse** 


- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D resistivity inversions
- 5. Check model and create plots

Select "Generic Induced Polarization" if your data is from IP survey



Select "Generic Resistivity" and click "OK" button

- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D resistivity inversions
- 5. Check model and create plots



Browse and select data file for import

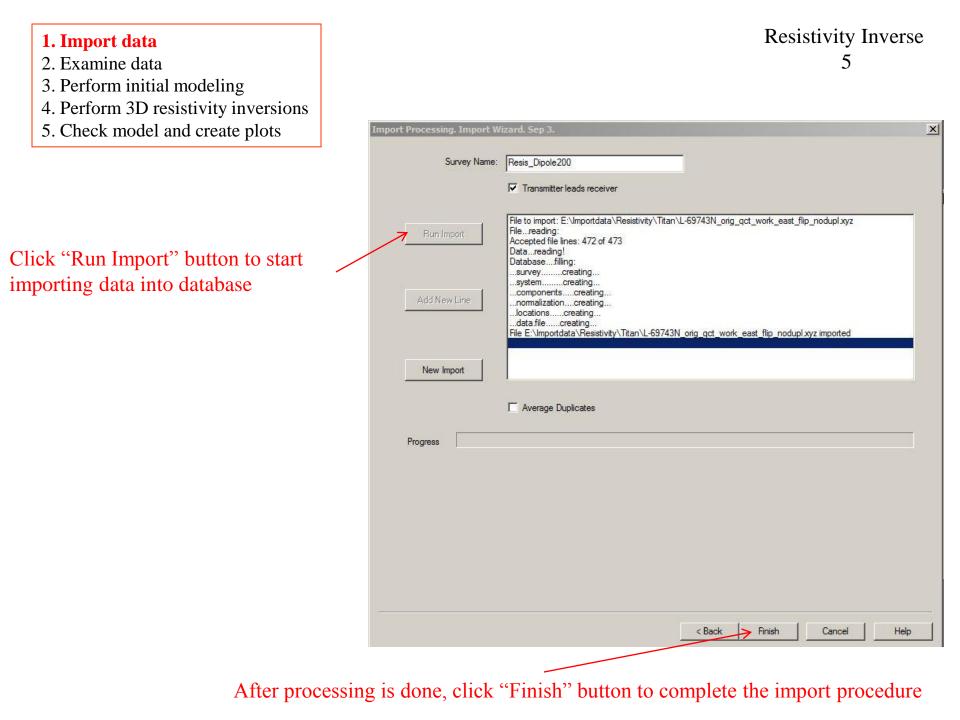
Select electrode array type and set the distance to infinity pole

Set line direction and select the data column for the line

Set dipole length and reference point position

- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D resistivity inversions
- 5. Check model and create plots

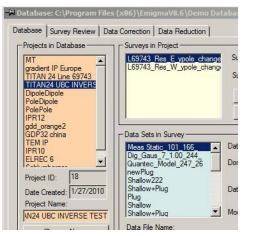
Select vertices for both transmitter and receiver, as well as the units of \_\_\_\_ coordinate


Select the column which contains voltage data and set its units

| 4150<br>4170<br>4170       | 0.00 69743.00                            | C2X()         | 797          | 73.00<br>73.00<br>73.00 |                 | Time delay:<br>On-Time window-<br>Window centre(s):<br>Window width: | 0               |                |
|----------------------------|------------------------------------------|---------------|--------------|-------------------------|-----------------|----------------------------------------------------------------------|-----------------|----------------|
| System                     | ertices:                                 | Unit          |              |                         |                 |                                                                      |                 |                |
| Electrode 1<br>Electrode 2 | 1 C1X0                                   | <b>-</b>      |              | Column #,<br>name       | Window<br>width |                                                                      | olumn #,<br>ame | Windo<br>width |
| ><br>Receiver Ver          |                                          | -    -        | Window 1     |                         | 0               | 🗌 🗆 Window 11                                                        | 7               | 0              |
| Electrode 1                | : 5 P1X()                                | ㅋ    ㄷ        | Window 2     |                         | 0               | 🔲 Window 12                                                          | ~               | 0              |
| Electrode 2                | : 7 P2X0                                 | ㅋ     ㅁ       | Window 3     | <b>T</b>                | 0               | 🔲 🗆 Window 13                                                        | <b>T</b>        | 0              |
|                            | e Units                                  | <b>≒</b>    ⊏ | Window 4     |                         | 0               | 🔲 Window 14                                                          | ~               | 0              |
|                            | <ul> <li>meters</li> <li>feet</li> </ul> |               | Window 5     |                         | 0               | 🔲 Window 15                                                          | ~               | 0              |
|                            | U feet                                   | _     ⊏       | Window 6     |                         | 0               | 🔲 🗆 Window 16                                                        | ~               | 0              |
|                            |                                          |               | Window 7     |                         | 0               | 🔲 🗆 Window 17                                                        | <b>T</b>        | 0              |
| Maltana                    | 10 VP0                                   |               | Window 8     |                         | 0               | 🗌 🗖 Window 18                                                        | ~               | 0              |
| Voltage:                   |                                          | ┘_   ┌        | Window 9     |                         | 0               | 🔲 🗆 Window 19                                                        | <b>T</b>        | 0              |
| - Ormas                    | OmVolts 💽 Volts                          |               | Window 10    | <b>_</b>                | 0               | 🔲 Window 20                                                          | <b>T</b>        | 0              |
|                            | O Apparent Resistivity                   |               | ata Units: — |                         |                 |                                                                      |                 |                |
| Current:                   | <b>v</b>                                 |               |              | C m∀/√                  |                 | © \/\                                                                | C mSec          |                |
| Units                      | 1                                        |               | ìme Window   | Units:                  |                 | n mSec                                                               | C Sec           |                |
| Units                      | 1<br>C mAmp © Amp                        |               | ìme Window   | Units:                  |                 |                                                                      |                 |                |
| Phase                      | <u></u>                                  |               | O Degree     | C Rad                   | C mBa           | ad Frequen                                                           | cy (Hz):        | 0              |
|                            |                                          |               |              |                         |                 |                                                                      |                 |                |

Click "Next" button to proceed to the next step

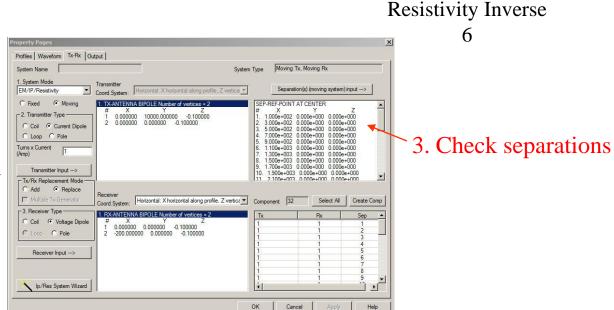
**Resistivity Inverse** 

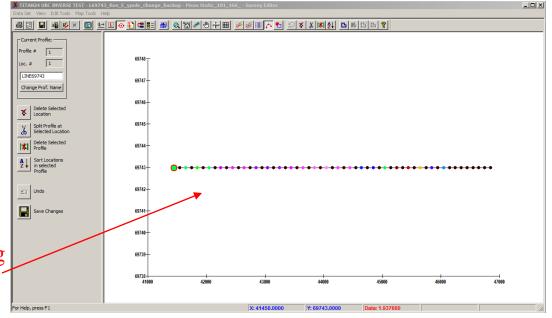

4



### 2. Examine data

- 3. Perform initial modeling
- 4. Perform 3D resistivity inversions
- 5. Check model and create plots


## 1. Check database for the survey





## 2. Click configuration

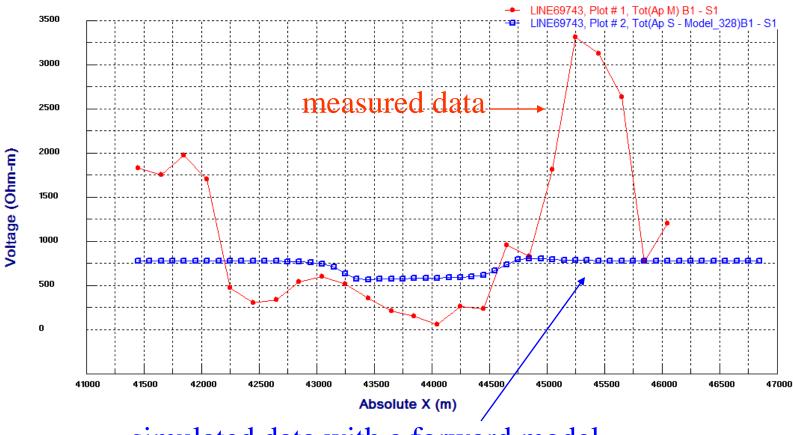

| Data File Name:   |         |
|-------------------|---------|
| ip_resist_152.dat |         |
| Configuration     | Grid(s) |

4. Check lines and stations by clicking "Survey Editor" button 😹










- 2. Examine data
- **3.** Perform initial modeling
- 4. Perform 3D resistivity inversions
- 5. Check model and create plots

# Resistivity Inverse 8

**Note:** *Performed some initial modeling to get a "feel" of the background resistivity and estimate* parameters of initial model for inversion.

#### **Resistivity Response**



simulated data with a forward model

| <ol> <li>Import data</li> <li>Examine data</li> <li>Perform initial modeling</li> <li>Perform 3D resistivity inversions</li> <li>Check model and create plots</li> </ol> | Resistivity Inverse<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data Sets in Survey<br>Meas Static 101 166<br>Dig_Gaus_7_1.00_244<br>Quantec_Model_247_26<br>newPlug<br>Shallow222<br>Shallow222                                         | Resistivity 3D Inversion         Flip data sign         Forward Method         Born       Superposition LN         Select         Select         No. of Selected         32         Background Layers         Select search         Select search         1         Component and Weight         Select         Select         No. of Selected         32         Background Layers         Set Layers         No. of Layers         1         Cells in X         106         Cells in Z         378       Top cell thickness         25       Exponentially         1       1         Cells in Z       378         Top cell thickness       25         Exponentially       1         Total       40068         Inversion Message       1         Inversion Message       1         Inversion Message       1         Entitial Model       1         Inversion Message       1         1       1         1       5         1 |
|                                                                                                                                                                          | Max iterations     20       Smoothness     0.5       Get Settings From a Log File     Min       Progress     Is28.4       Close application when inversion     Bun       Close     Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

### **Resistivity Inverse** 10

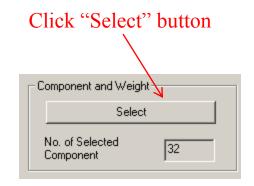
### 1. Import data

- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D resistivity inversions
- 5. Check model and create plots

## Set search volume and grid:

User can input the search volume's center position (X, Y), top Z position and horizontal angle with the coordinate, also the volume's regime on X and Y axis as well as its thickness. User can also manually select the search area on the graphic tool by clicking the "Select search area" button User can set grid by input cell size on X, Y and Z axis as well as number of cells in Z (can be evenly or exponentially spaced). The sampling rate of cells for all axes can be set in "Cell Sampling" area

| Choose "Flip data sign" option if it is not                | 🐕 Resistivity 3D Inversion   |                      | •              | - \                |                           |      |
|------------------------------------------------------------|------------------------------|----------------------|----------------|--------------------|---------------------------|------|
| in accordance with system                                  | ->_ Flip data sign           | -Search Volome-      |                |                    |                           |      |
| Select forward simulation method: Born                     | Forward Method               | Center X             | Center Y       | Top Z              | Horizontal Angle (degree) |      |
| approximation or Superposition LN                          | Born C Superposition LN      | 44150                | 69743          | -1                 |                           |      |
| Select components for inversion and assign weights on them | Component and Weight         | Size X<br>5300       | Size Y<br>2650 | Thickness<br>9450  | Select search area        |      |
| Set background layers parameters                           | No. of Selected 32           | Grid Settings-       |                |                    | Cell Sampli               | na   |
| (resistivity and thickness) within which the               | Component  32                | Cells in X           | 106            | Cell size X        | 50 Spacing Z direction X  |      |
| model situated                                             | Background Layers            | Cells in Y           | 1              | Cell size Y        | 2650 © Evenly             |      |
| Create or import initial model for inversion               | Set Layer Set Layers         | Cells in Z           | 378            | Top cell thickness | 25 C Exponentially        |      |
| in the pop-up dialog                                       | No. of Layers                | Total                | 40068          |                    | (based on 2) Z            |      |
| Set constraint for output model's resistivity              | 🔭 Use Initial Model          |                      |                |                    |                           |      |
| to exclude inverted models with unwanted                   |                              | utput Model Resistiv |                |                    | Inversion Message         |      |
| resistivity values                                         | Inversion Parameters         | ensitivity<br>e-006  | Min<br>54      | Max<br>5485        |                           |      |
| User can also remove model cells whose                     | Target Misfit 5              |                      | ·              |                    |                           |      |
| resistivity values are within a certain range              |                              | Remove cells b       |                | Output cells       |                           |      |
| to accelerate processing                                   | Smoothness 0.5               | Min<br>1328.4        | Max<br>1623.6  | 40068              |                           |      |
| Set inversion parameters: tolerant data error              | Get Settings From a Log File | ,                    | ,              |                    |                           |      |
| (Target Misfit), maximum number of //                      | Progress                     |                      |                |                    |                           |      |
| iterations (Max iterations) and Smoothness                 | Close application wh         | en inversion         | <u>B</u> un    |                    | Close                     | Help |
| of the model                                               |                              |                      | <u>n</u> uri   |                    |                           | Teh  |


- weights on them
- Set background layers parameters
- (resistivity and thickness) within which model situated
- Create or import initial model for inversi in the pop-up dialog
- Set constraint for output model's resistiv to exclude inverted models with unwant resistivity values
- User can also remove model cells whose resistivity values are within a certain ran to accelerate processing
- Set inversion parameters: tolerant data en (Target Misfit), maximum number of iterations (Max iterations) and Smoothne
- of the model

| 1. Import data |  |
|----------------|--|
|----------------|--|

- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D resistivity inversions
- 5. Check model and create plots

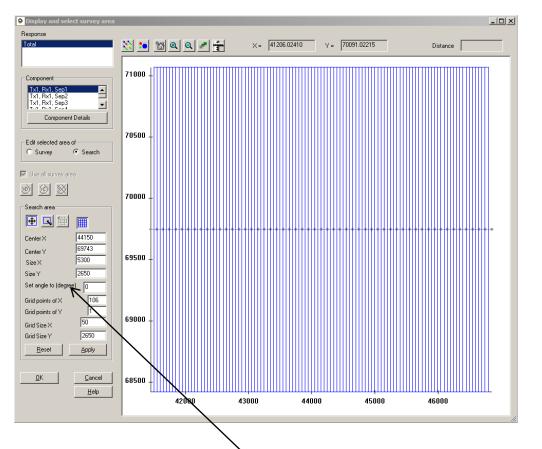
| N                                            | Tx                                                                             | Bx                                    |     | Separation (              | x, y, z)    |          | Weight                                   | ▲ |
|----------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------|-----|---------------------------|-------------|----------|------------------------------------------|---|
| <b>☑</b> 1                                   | Bipole 1                                                                       | Bipole 1                              | 10  | 0.000000.0.0000           |             | 000      | 1.000000                                 |   |
| 2                                            | Bipole 1                                                                       | Bipole 1                              |     | 0.000000, 0.0000          |             |          | 2.236128                                 |   |
| <b>₩</b> 3                                   | Bipole 1                                                                       | Bipole 1                              | 50  | 0.000000, 0.0000          | 000, 0.000  | 0000     | 3.415997                                 |   |
| ✓ 4                                          | Bipole 1                                                                       | Bipole 1                              |     | 0.000000, 0.0000          |             |          | 4.583706                                 |   |
| ✓ 5                                          | Bipole 1                                                                       | Bipole 1                              | 90  | 0.000000, 0.0000          | 000, 0.000  | )000     | 5.747348                                 |   |
| 🗹 6                                          | Bipole 1                                                                       | Bipole 1                              | 110 | 0.000000, 0.000           | 000, 0.00   | 0000     | 6.909889                                 |   |
| 7                                            | Bipole 1                                                                       | Bipole 1                              |     | 0.000000, 0.000           |             |          | 8.072943                                 |   |
| <b>1</b> 8                                   | Bipole 1                                                                       | Bipole 1                              | 150 | 0.000000, 0.000           | 000, 0.00   | 0000     | 9.237676                                 | - |
| O Unifo                                      | eights<br>rm weights<br>re root geometric                                      | weights                               |     | netric weights<br>enerate | Sum         | of Weigł | nts 633.86                               |   |
| ⊙ Unifo<br>⊙ Squa                            | rm weights<br>re root geometric                                                | C<br>weights                          |     |                           | Sum         | of Weigt | nts 633.86                               |   |
|                                              | rm weights<br>re root geometric                                                | weights                               |     |                           | Sum         | of Weigh | nts 633.86<br>Z                          |   |
| ◯ Unifo<br>ⓒ Squa<br>v/Rx inform             | rm weights<br>re root geometric<br>N                                           | ×<br>0.000000                         |     | enerate                   | 000         | -        | Z<br>-0.100000                           |   |
| C Unifo                                      | rm weights<br>re root geometric<br>Nation                                      |                                       |     | enerate                   | 000         | -        | Z                                        |   |
| C Unifo<br>Squa<br>/Rx inform<br>[x/Rx<br>x  | rm weights re root geometric hation N 1 2                                      | ×<br>0.000000<br>0.000000             |     | enerate                   | 000         | -        | Z<br>-0.100000<br>-0.100000              |   |
| C Unifo                                      | m weights re root geometric hation           N         1           2         1 | ×<br>0.000000<br>0.000000<br>0.000000 | G   | enerate                   | )<br>)<br>) |          | Z<br>-0.100000<br>-0.100000<br>-0.100000 |   |
| C Unifo<br>Squa<br>/Rx inform<br>/x/Rx<br>x  | rm weights re root geometric hation N 1 2                                      | ×<br>0.000000<br>0.000000             | G   | enerate                   | )<br>)<br>) |          | Z<br>-0.100000<br>-0.100000              |   |
| C Unifo<br>C Squa<br>/Rx inform<br>x/Rx<br>x | m weights re root geometric hation           N         1           2         1 | ×<br>0.000000<br>0.000000<br>0.000000 | G   | enerate                   | )<br>)<br>) |          | Z<br>-0.100000<br>-0.100000<br>-0.100000 |   |

# Selection of components



Click "OK" button after it is done

Users can select components involved with inversion. For the case of 3D resistivity inversion, different components are actually different separations. Users can also give weightings to different components. Use more components in inversion will make the inverted model more accurate


**Resistivity Inverse** 

## Resistivity Inverse

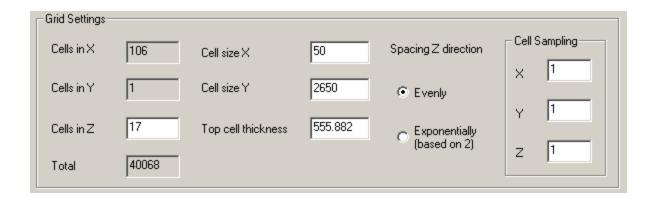
12

- Import data
   Examine data
- 3. Perform initial modeling
- **1** Demonstration and the second
- 4. Perform 3D resistivity inversions
- 5. Check model and create plots

Clicking either the **Select Search Area** or **Select Survey Area** buttons launches the same window. But search area means the area of data which the inversion algorithm works on, while survey area is the whole part of the imported data.



#### Survey Area


Click the Select survey area button to launch the graphical tool which enables you to specify the data points that will be used in the inversion calculations.

#### Search Volume

The default parameters in the **Search Volume** section will create a grid that covers the entire survey. You can modify the search area parameters by entering new values or by using the graphical tool

If change the value in "Set angle to (degree)" box, the angle between search area and survey area will be changed accordingly

- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D resistivity inversions
- 5. Check model and create plots



#### Grid Settings

Confirm the number and layout of grid points to be used in the inversion in the **Grid Settings** area. The points will be evenly spaced in the x and y directions. Choose **Evenly** for evenly spaced points in the z direction or **Exponentially (based on 2)** for exponentially spaced points.

#### Cell Sampling

Grid cells can be divided into smaller units when calculate the simulated data. Type your values in the X, Y and Z boxes to specify the number of samples in the X, Y and Z directions

- 1. Import data
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D resistivity inversions
- 5. Check model and create plots

| uild a m |                                |                       |                        |            |                                 |             |                                         |  |
|----------|--------------------------------|-----------------------|------------------------|------------|---------------------------------|-------------|-----------------------------------------|--|
|          | Size (m)                       |                       | iter (m)               |            | Euler Angles (degree)           |             | Conductivity                            |  |
| ×        | 5300                           | ×  44                 | 150                    | 1st        | 0                               |             | 0.01                                    |  |
| Y        | 2650                           | Y 69                  | 743                    | 2nd        | 0                               |             |                                         |  |
| z        | 9450                           | Z 4                   | 726                    | 3rd        | 0                               |             | Add a prism                             |  |
| Set      | size to all selected<br>prisms |                       |                        | Set ar     | ngles to all selected<br>prisms | :           | Set conductivity to all selected prisms |  |
|          |                                | t a model             |                        |            | Delete a                        | II selected | l prisms                                |  |
| al Mod   | fel<br>Conductivity            | 1st Angle             | 2nd Angle              |            | 3rd Angle   Si                  | zeX         | Size Y                                  |  |
| •        | Conductivity                   | (degree)              | (degree)               |            |                                 | (m)         | (m)                                     |  |
|          |                                |                       | There are no ite       | ems to she | ow in this view.                |             |                                         |  |
|          |                                |                       |                        |            |                                 |             |                                         |  |
|          |                                |                       |                        |            |                                 |             |                                         |  |
|          |                                | un in altriate al art | an in the list alignet | lu double. | click it, then input a new      | oulou       |                                         |  |

# Resistivity Inverse

## Initial Model

Click the checkbox labeled **Use Initial Model** to specify an initial model. Return to the initial model window by clicking the **Set Initial Model** button.

The starting model is described by a list of prisms with various properties in the box labeled **Initial Model**.

# add a prism to the model list

Specify the conductivity, size, position and orientation of the new prism in the **Build a model** section. Click the **Add a prism** button.

# modify an existing prism in the model list

Select the number of the prism to be modified in the anomaly list, and double-click the parameters to make modification directly.

# apply the same values for a group of selected prisms

Click the **Set conductivity to all selected prisms** button to modify the conductivity. Click the **Set angles to all selected prisms** button to modify the angles. Click the **Set size to all selected prisms** button to modify the size.

## delete prisms from the model list

Select the prisms to be deleted in the anomaly list. Click **Delete all selected prisms** 

# import a model from another data set in the current database

#### Click Import a model.

Select the project, survey, and data set with the desired model Click **OK** and the model will appear in the **Initial Model**.

2. Examine data

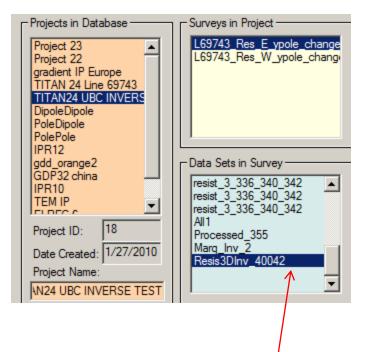
3. Perform initial modeling

- 4. Perform 3D resistivity inversions
- 5. Check model and create plots

# Resistivity Inverse 15

## Executing the Inversion

| Component and Weight<br>Select<br>No. of Selected<br>Component 32 | Center X         | Center Y        | TopZ                                      | Horizontal Angle (degree)       |               |
|-------------------------------------------------------------------|------------------|-----------------|-------------------------------------------|---------------------------------|---------------|
|                                                                   | 44150            |                 | 100.000 C C C C C C C C C C C C C C C C C | noncontal Angle (degree)        |               |
|                                                                   | 144130           | 69743           | 1                                         | 0                               |               |
| Background Layers                                                 | Size X           | Size Y<br>2650  | Thickness<br>9450                         | Select search area              |               |
| Set Layer Set Layers                                              | - Grid Settings- | -               |                                           |                                 |               |
| No. of Layers                                                     | Cells in X       | 106             | Cell size X                               | 50 Spacing Z direction          | Cell Sampling |
| Use Initial Model                                                 | Cells in Y       | 1               | Cell size Y                               | 2650 C Evenly                   |               |
| Set Initial Model                                                 | Cells in Z       | 378             | Top cell thickness                        | 25 C Exponentially (based on 2) | Y  '          |
| Select survey area                                                | Total            | 40068           |                                           |                                 | 2 ['          |
|                                                                   | m)               | Inversion Parar | neters                                    | Inversion Message               |               |
| Sensitivity Min                                                   | Max              | Target Misfit   | 5                                         | Prepare data                    |               |
| 1e-006 54                                                         | 5485             | Max iterations  | 20                                        | Start inversion.                | <b>E</b>      |
| ☐ Remove cells between Outpu<br>Min Max                           | ut cells         | Smoothness      | 0.001                                     | Setting up equation system      |               |
| 1328.4 1623.6 4006                                                | 8                | Get Settings    | From a Log File                           |                                 |               |
| Progress                                                          |                  |                 | <del>\</del>                              | 3.                              |               |
| Close application<br>completes                                    | when inversion   | Run             |                                           | Close                           | H             |


The right window (in white) shows each data point's progress.

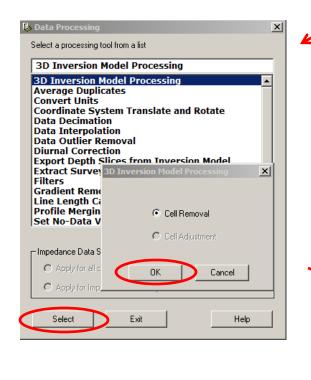
The "Progress" bar shows the total progress of this inversion.

start inversion

2. Examine data

- 3. Perform initial modeling
- 4. Perform 3D resistivity inversions
- 5. Check model and create plots




Our 3D inversion model dataset

# Resistivity Inverse 16

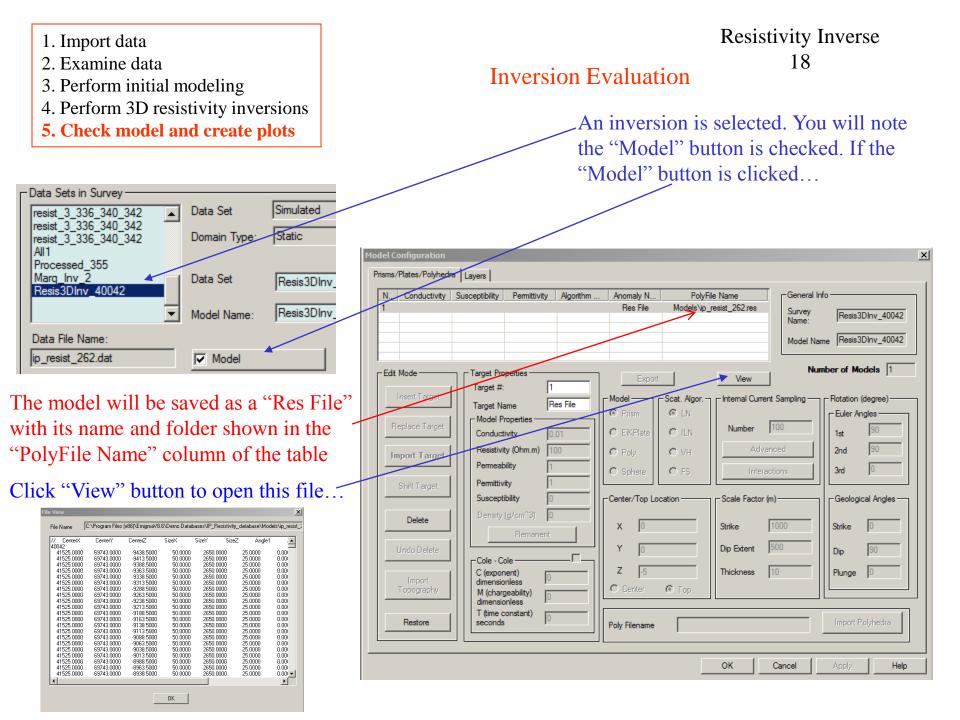
### **Inversion Evaluation**

In each survey, there will be several data sets after modeling, inversion and processing. In this case, we have several forward models, one 1D inversion model (Mar\_Inv\_2, achieved from 1D inversion) and one 3D inversion model (Resis3DInv\_40042, as highlighted). Each forward model has a new data set containing the simulated data under the model. Similarly, each inversion contains a new dataset containing the simulated data set under the inversion model (for each point) and attached to that data set is the inversion model.

- 1. Import data
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D resistivity inversions
- **5.** Check model and create plots



Click "Apply" button when it is done


Therefore, users can reduce the range of model either before inversion (by Select Search Area) or after inversion (by Cell Removal)

## Inversion Evaluation

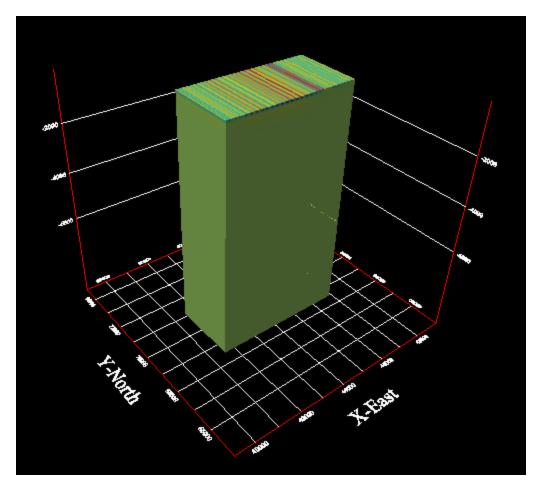


Users can use "3D Inversion Model Processing" tool to remove cells in inverted model. Follow the routine shown in this page and arrive "Cell Removal" dialog. Choose the removal range of cells: "Low Limit" and "High Limit" (any cell within this range will be removed) /

|                   | Cell Removal                                                                                            |                                                                                                                                                                                              |
|-------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | TITAN24 UBC INVERSE TEST - L69743_Res_E<br>Inversion File: ip_resist_262.res<br>Model: Resis3DInv_40042 | _vpole_change_backup -<br>Data Set ID: 262                                                                                                                                                   |
|                   | # of Cells40042Minimum1719.5Ohm.mMaximum2398.73Ohm.m                                                    | Distribution of Values<br>1719.498 -> 1855.344: 0.0699%<br>1855.344 -> 1991.190: 99.6503%<br>1991.190 -> 2127.035: 0.1873%<br>2127.035 -> 2262.881: 0.0574%<br>2262.881 -> 2398.727: 0.0349% |
| el either<br>fter | Remove cells<br>Low Limit 1719.5<br>Reset Apply                                                         | in this range:<br>High Limit 2398.73<br>Save Cancel                                                                                                                                          |



2. Examine data


- 3. Perform initial modeling
- 4. Perform 3D resistivity inversions
- **5.** Check model and create plots

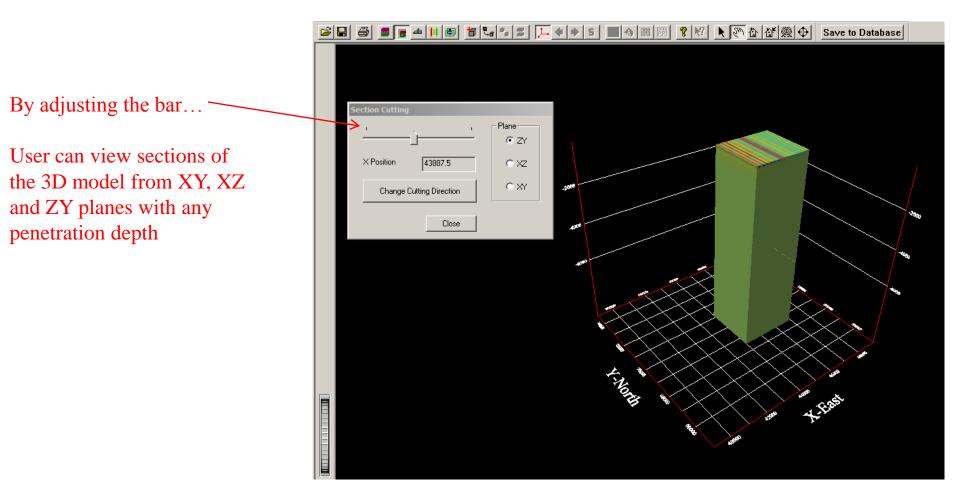
## Inversion Evaluation

Click viz button to open Visualizer tool to view the inverted 3D model...

Resistivity Inverse

19




- 1. Import data
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D resistivity inversions
- 5. Check model and create plots

# Inversion Evaluation

Select from menu "Model -> Mag/Grv/Res File -> mag/grv/res Cutting" to open the Section Cutting tool.

**Resistivity Inverse** 

20

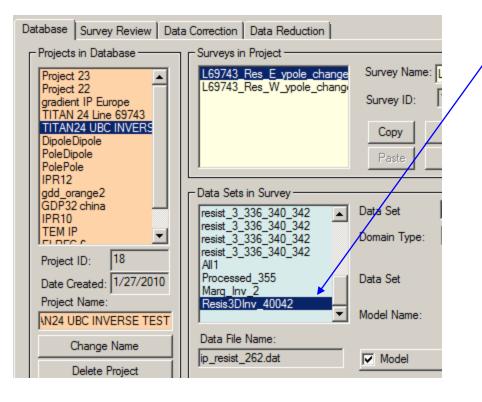


- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D resistivity inversions
- 5. Check model and create plots

# Inversion Evaluation

Select from menu "Model -> Mag/Grv/Res File -> Sensitivity" to open the Section Cutting tool.

**Resistivity Inverse** 


21

🖆 🖬 🎒 📕 🚛 🚈 🔢 📾 🎜 📞 🞜 🎜 📜 🌩 🗩 5 🔳 🚸 🏼 🖾 🖉 🕅 😵 🖗 🕼 🕍 💥 🕀 Save to Database × Resistivity Unit: ohm-m Min value 1716.55 Max value 2404.49 1800 Selected min value Apply 2000 Selected max value Reset Close

By adjusting minimum value and maximum value shown in the figure...

The model in this figure will only exhibit cells with values specified in this range

- 1. Import data
- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D resistivity inversions
- 5. Check model and create plots



## Inversion Evaluation

To assess how well the inversion model fits the data at each station, select the inversion data set and then select the

**Resistivity Inverse** 

22

plotter.



| Load Data Set |                |                  |               | ×    | ٢ |
|---------------|----------------|------------------|---------------|------|---|
| ?             | Do you want to | compare with oth | er Data Sets? |      |   |
| Yes           | No             | Load Settings    | Cancel        | Help |   |

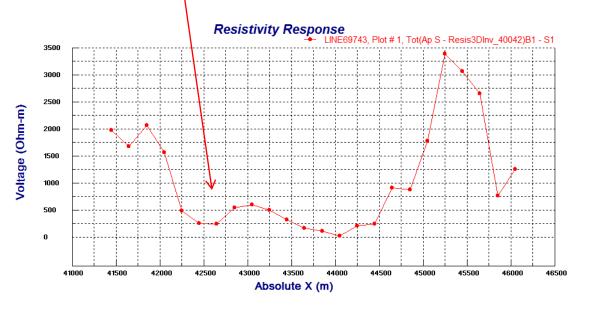
Select "Yes", if this dialog is appeared

2. Examine data

3. Perform initial modeling

4. Perform 3D resistivity inversions

5. Check model and create plots

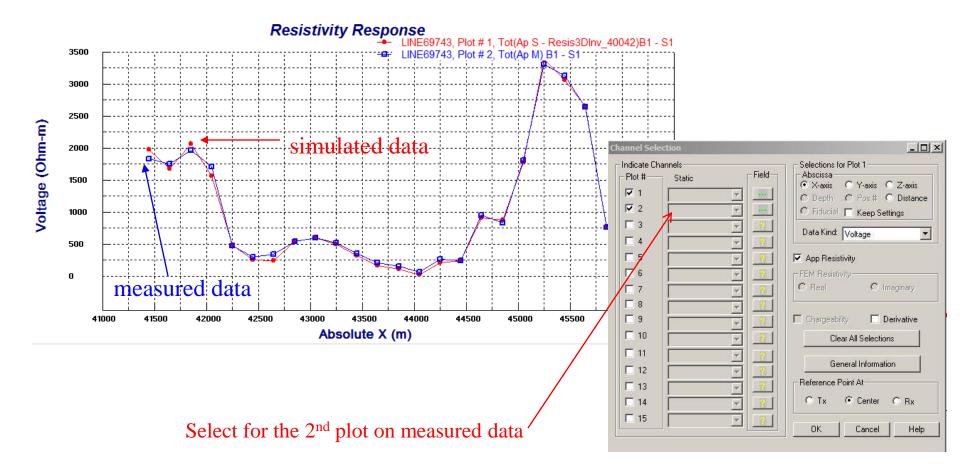

All selected data sets are then loaded to the Plotter application and the plot appears showing the simulated data of the first separation.

## Inversion Evaluation

# Resistivity Inverse 23

# Select the data sets required for comparison and then click "Load"

| ata Sets in Survey:                           |                                      | 20          |                       | Selected Data Sets to               | plot:            | 2      |
|-----------------------------------------------|--------------------------------------|-------------|-----------------------|-------------------------------------|------------------|--------|
| Name                                          | Model Name                           | Type 🔺      | Data Units:           | Name                                | Model Name       | Туре   |
| Dig_Gaus_7_1.00<br>Quantec_Model_2<br>newPlug | Model_201<br>Plug                    | P<br>S<br>S | Volts                 | Resis3DInv_40042<br>Meas Static_101 | Resis3DInv_40042 | S<br>M |
| Shallow222<br>Shallow+Plug<br>Plug            | shallow222<br>Shallow+plug<br>Plug   | S<br>S<br>P | Add to>               |                                     |                  |        |
| Shallow<br>Shallow+Plug                       | shallow222<br>Shallow+plug           | P<br>P      | Add All to>           | ]                                   |                  |        |
| Shallow_328<br>Shallow_2                      | Model_328<br>Shallow_2<br>Challers 2 | S<br>S<br>• | < Remove from         |                                     |                  |        |
|                                               |                                      |             | Show IMPEDANCE Data S | Sets in Survey                      |                  |        |
| Loading                                       |                                      |             |                       |                                     | Loa              | . 1    |

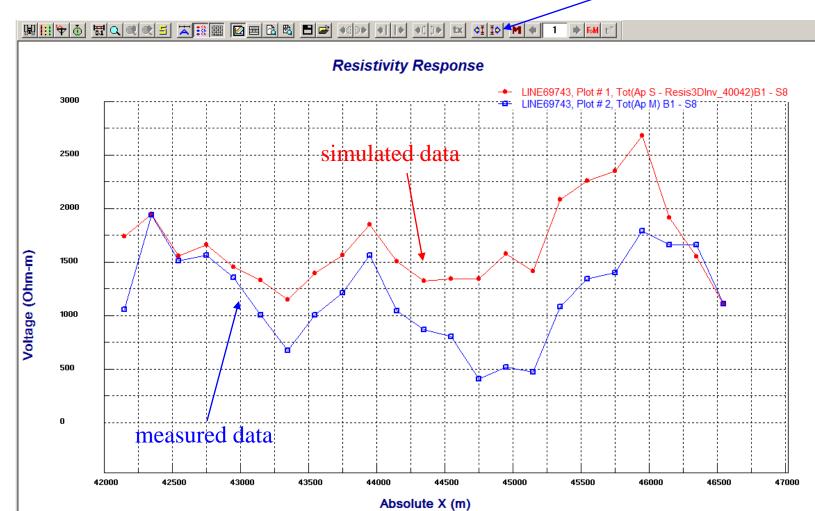



- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D resistivity inversions
- 5. Check model and create plots

### **Inversion Evaluation**

Resistivity Inverse 24

The user may select other data sets to plot by simply double clicking on the plot




- 2. Examine data
- 3. Perform initial modeling
- 4. Perform 3D resistivity inversions
- 5. Check model and create plots

**Inversion Evaluation** 

Resistivity Inverse 25

Multiple plots can be shown for various inversions and models in "Static" mode. The user may step through different separations by simply clicking the arrow.

